Home Work Oct 5 perturbation theory

1. Using the particle in a box wavefunction

$$
\begin{aligned}
& \psi_{n}^{0}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi}{L} x \\
& E_{n}^{0}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{n^{2} \eta^{2} \pi^{2}}{2 m L^{2}}
\end{aligned}
$$

Solve for the first order corrected wavefunction for the $\mathrm{n}=1$ and $\mathrm{n}=2$ state for the following perturbation where $\mathrm{L}=1$ atomic unit length and $\mathrm{V}_{0}=10$ atomic unit energy and mass $\mathrm{m}=1$ atomic unit weight.

$$
H^{\prime}=\frac{V_{0} x}{L} \quad \text { for } 0<x<L
$$

And plot it in excel file. For the summation in k use up to 11 zerth order wave functions. What is the physical meaning of the change in wavefunction shape?
$\left|n^{1}\right\rangle=\sum_{k \neq n} \frac{\left\langle k^{0}\right|\left(\hat{H}^{\prime}\right)\left|n^{0}\right\rangle}{\left(E_{n}^{0}-E_{k}^{0}\right)}\left|k^{0}\right\rangle$
$|n\rangle=\left|n^{0}\right\rangle+\left|n^{1}\right\rangle$

